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Abstract

The dynamic stability of a collar-stiffened pipe conveying fluid was examined by using the Euler–Bernoulli beam theory.

The pipe considered consists of identical substructures, or cells, connected in an identical fashion. Each substructure, or

cell, comprises a uniform pipe segment and a collar. A finite element model was developed to predict the dynamic stability

of the stiffened pipe under the action of the flowing fluid. Stability maps were obtained for clamped-free collar-stiffened

pipes of various design parameters. The design parameters included the arrangement and the geometry of the identical

cells. The stability maps demonstrated that the collar-stiffened pipe exhibits unique stability characteristics when compared

to a uniform pipe. It was found that the stable region in the stability map enlarges for the collar-stiffened pipe when

compared to a uniform pipe. To give clearer insight into the pipe dynamic behavior, the dynamic response and eigenvalue

branches were presented for a number of collar-stiffened pipes.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic stability of pipes conveying fluid has been a challenging problem over the last century. The
instability of a pipe is initiated when the fluid is transported at a critical speed through the pipe system.
Systems such as piping networks, feed tubes of rocket motors, tubes in heat exchangers and nuclear reactor
components are some examples of pipes conveying fluid. The dynamic behavior of this class of structures is
quantified by considering their dynamic response and dynamic stability. In the dynamic response analysis, the
system behavior is determined in the time and/or frequency domain. The analysis of dynamic stability
involves, however, the computation of the boundaries between the stable and unstable regions. In the
appropriate planes of system parameters, a stability map is usually constructed to show the boundaries
between the stable and unstable regions.

Considerable research effort has been put forth to study the dynamic response and stability of uniform pipes
conveying fluid. For example, Housner [1] was the first to investigate the dynamic stability of uniform
pipes supported at both ends and conveying fluids. Benjamin [2] was the first to correctly derive Hamilton’s
principle of continuous, flexible, pipes. The work of Gregory and Paı̈doussis [3,4] focused on obtaining
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-sectional area
A system matrix in Eq. (18)
_c axial velocity of the pipe
C global damping matrix of the pipe
Cf skew damping matrix due to flowing fluid
Cou damping matrix due to fluid out-release
Di inner diameter of the pipe
Do outer diameter of the pipe
E Young’s modulus
f step factor in Fig. 1(b)
fg load vector in Eq. (14)
F state space load vector in Eq. (23)
g gravitational acceleration
h finite element length
I moment of inertia
K global stiffness matrix of the pipe
Kf stiffness matrix due to flowing fluid
Kou stiffness matrix due to fluid out-release
L pipe length
Lu cell length
Ls collar length
mf fluid mass per unit length
M global mass matrix of the pipe
n number of finite elements
Ni shape functions
t time
T total kinetic energy of the pipe system
Tp kinetic energy of the pipe

Tf kinetic energy of the fluid
U fluid speed relative to the pipe
u dimensionless speed ratio ¼ UL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf

�
EI

q
V total strain energy of the pipe system
vi nodal DOF
vx x-component of the fluid absolute

velocity
vz z-component of the fluid absolute

velocity
v vector of nodal displacements
Wnc work of non-conservative forces
w transverse displacement of the pipe
x global x coordinate
Z state space vector in Eq. (19)

Greek letters

b dimensionless mass ratio ¼ mf

�
mf þ rA
� �

d first variation
Z damping coefficient of the pipe

material
l eigenvalue of the system matrix A

r mass density of the pipe
z time variable in Eq. (24)

Superscripts

T transpose
�ð Þ
0 spatial derivative ¼ qð�Þ=qx

_�ð Þ time derivative¼ qð�Þ=qt
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the stability conditions of uniform cantilever pipes. Paı̈doussis [5] has presented a comprehensive survey of the
dynamics and stability of slender structures subjected to moving fluid. Paı̈doussis and Li [6] reviewed the
dynamics of pipes conveying fluid and presented a selective review of the research undertaken on it. Pandiyan
and Sinha [7] presented procedure for the analysis of nonlinear dynamical systems with periodically varying
parameters under critical conditions. Semler et al. [8] used energy and Newtonian methods to derive the
nonlinear equations of motion of pipes conveying fluid. In a more recent work, Semler and Paı̈doussis [9]
presented an overview of the applicability of some numerical approaches in parametric resonances of
cantilevered pipes. Szabo [10] investigated the dynamic behavior of pipe containing pulsatile flow.

The literature regarding the stability analyses of stepped pipes conveying fluid is limited. A work by
Maalawi and Ziada [11] is focused on the static instability of stepped pipes conveying fluid. In their study [11],
each uniform portion of the pipe is considered as a module and the instability is investigated when the
module’s wall thickness and length is changed. In a related problem, Aldraihem and Baz [12,13] studied the
dynamic stability of stepped beams under the action of moving loads. It has been shown that better stability
characteristics can be obtained by using stepped beam when compared to a uniform beam.

The present paper had the objective of presenting a general stability analysis for collar-stiffened pipe
consisting of substructures or cells. Each substructure or cell comprises a uniform pipe segment and a collar.
A finite element model was formulated to account for the collars and the interaction between the flowing fluid
and pipe vibration. The stability of the collar-stiffened pipe is evaluated by analyzing the eigenvalues of the
collar-stiffened pipe system. The dynamic stability of collar-stiffened cantilever pipes conveying fluid was
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Fig. 1. Collar-stiffened pipe (a) and one cell geometry (b).
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investigated. The effects of the number of cells, cell length ratio and step factor on the stability characteristics
were demonstrated. The dynamic response and the eigenvalue branches (i.e. the modes of vibration that are
responsible for causing instability in the pipe) are presented for a number of pipe systems.

2. Analysis

The system considered consisted of a collar-stiffened pipe of length L, as shown in Fig. 1(a). The pipe
conveyed a fluid moving at a constant axial velocity relative to the pipe U. The pipe consisted of identical cells,
or substructures, connected in identical fashion (Fig. 1(a)). Each cell comprised a uniform pipe segment and a
collar which is perfectly attached to the outer-surface of the cell. The length of the cell is Lu, and the length of
the collar is Ls (Fig. 1(b)). The pipe x-axis was assumed to pass through the centroid of the cross-section and
to vibrate in the x–z plane.

The main assumptions for the collar-stiffened pipe and the moving fluid are as follows: (1) the pipe is
symmetric and obeys the Euler–Bernoulli theory; (2) the fluid is incompressible and of mass mf per unit length;
and (3) the pipe’s cells are made of isotropic materials.

2.1. Variational formulation

A variational approach, which accounts for the exchange of energy between a flowing fluid and a pipe, can
be used. The approach was first devised by Benjamin [2] and then elaborated by McIver [14]. The approach is
essentially Hamilton’s principle with some modification to encompass the fluid energy exchange.

Adopting Benjamin’s technique, the Hamilton’s principle of a pipe conveying fluid can be written as [2]Z t2

t1

d T � Vð Þ þ dWnc þmf U2

Z L

0

w0dw0 dx�mf U _wL þUw0L
� �

dwL

� �
dt ¼ 0, (1)

where d is the first variation, T is pipe total kinetic energy, V is pipe strain energy, dWnc is virtual work done
by the non-conservative forces (which includes structural damping and forces not accounted for in V), w is the
transverse displacement of the pipe. The primes denote spatial derivatives with respect to x and the dots
denote time derivatives. The notation wL ¼ w(L, t) is used.

2.1.1. Kinetic energy

The total kinetic energy of the pipe is the sum of the kinetic energy of the collar-stiffened pipe,
Tp, plus the kinetic energy of the flowing fluid, Tf. The kinetic energy attributed to the collar-stiffened
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pipe is given by

Tp ¼
1

2

Z L

0

rA _w2 dx, (2)

where r is the pipe mass density and A is the pipe cross-sectional area. It should be noted that the cross-
sectional area for the uniform pipe portion is different from the collar portion.

The kinetic energy of the moving fluid is

Tf ¼
1

2
mf v2z þ v2x
� 	

. (3)

Although the fluid velocity relative to the pipe is a constant U, the components of the absolute fluid velocity
vary with time and are given by

vz ¼ _wþUw0,

vx ¼ U 1�
1

2
w0ð Þ

2


 �
� _c, (4)

where _c denotes the pipe velocity in the x direction.
From Eqs. (3) and (4) and neglecting the higher order terms (i.e., approximate to second order), the kinetic

energy of the fluid reduces to

Tf ¼
1

2
mf

Z L

0

_w2 þ 2U _ww0 þU2 � 2U _c
� �

dx. (5)

Hence, the total kinetic energy is obtained as

T ¼
1

2

Z L

0

rA _w2 þmf _w2 þ 2U _ww0 þU2 � 2U _c
� �� 	

dx. (6)

It should be noted that the last two terms in Eq. (6) will vanish with the first variation.

2.1.2. Strain energy

The strain energy of a collar-stiffened pipe can be expressed as

V ¼
1

2

Z L

0

EI w00ð Þ
2
� 2ðrAþmf Þg

h i
dx, (7)

where E denotes the Young’s modulus, I denotes the pipe moment of inertia and g denotes the gravitational
acceleration. In Eq. (7), the moment of inertia is stepwise constant, i.e., it has value for the uniform pipe
portion different from the collar portion.

2.1.3. Work by non-conservative forces

The work done by the non-conservative forces is only due to the internal damping of the pipe. In this study,
the damping is assumed to follow the Kelvin–Voigt model that yields the following expression:

dWnc ¼ �

Z L

0

ZI _w00dw00 dx, (8)

where Z is the damping coefficient.

2.2. Distributed-parameter model

Using Eq. (1) with Eqs. (6)–(8) and performing some algebraic manipulations yields the following equation
of motion:

rA €wþ EIw0000 ¼ pf ðx; tÞ þ pdðx; tÞ, (9)
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where the excitation load and the damping force are, respectively, given as

pf ðx; tÞ ¼ �mf €w� gþ 2U _w0 þU2w00
� �

þ rAg,

pdðx; tÞ ¼ �ZI _w0000, ð10Þ

with boundary conditions pairs

Essential BC Natural BC

At x ¼ 0 w ZI _w000 þ EIw000 ¼ �mf U _wþUw0ð Þ;

w0 ZI _w00 þ EIw00 ¼ 0;

At x ¼ L w ZI _w000 þ EIw000 ¼ 0;

w0 ZI _w00 þ EIw00 ¼ 0:

(11)

It should be emphasized that the shear natural boundary condition at x ¼ 0 is different than that at x ¼ L.
This distinction is generated by the flow out-release effect. The parameters rA, EI and ZI vary in stepwise
manner along the pipe x-axis.

The terms on left-hand side of Eq. (9) are, respectively, the inertia force and the flexural force of the pipe.
Starting from the equality sign, the various terms on the right-hand side of the excitation load pf(x,t)
(Eq. (10)), may be identified, sequentially, as the fluid inertia, gravitational, Coriolis, and centrifugal forces,
and the pipe gravitational force. The term pd(x,t) is a non-conservative damping force.

2.3. Finite element model

Investigating the dynamic behavior of the pipe system, Eqs. (9)–(11) analytically is found to be a difficult
task. Approximate techniques such as finite element method will be used to examine the system stability and
response. A one-dimensional (1D) beam element will be formulated to discretize the system equations. The
shape functions used to approximate the transverse displacement are chosen to be Hermite-cubic polynomials.
The displacements of the beam elements are approximated by

wðx; tÞ ¼
X4
i¼1

NiðxÞviðtÞ, (12)

where (v1, v2) and (v3, v4) are transverse displacement and rotation at the left end and the right end of the finite
element, respectively, and Ni represent the shape functions given by

NT ¼

1� 3
x� xi

h

� 
2
þ 2

x� xi

h

� 
3
ðx� xiÞ � 2h

x� xi

h

� 
2
þ h

x� xi

h

� 
3
3

x� xi

h

� 
2
� 2

x� xi

h

� 
3
�h

x� xi

h

� 
2
þ h

x� xi

h

� 
3

66666666666664

77777777777775
, (13)

where x denotes the pipe global x coordinate, xi denotes the distance from the left end of the pipe to the left
node of the ith finite element, and h denotes the length of the finite element.

For n finite elements the discrete differential equations of the collar-stiffened pipe are obtained by using Eq. (12) to
evaluate the energy terms in the Hamilton’s principle (Eq. (1)). Integrating the result over the spatial domains leads to

M€vþ Cþ Cf þ Cou

� �
_vþ Kþ Kf þ Kou

� �
v ¼ fg, (14)

where

M ¼

Z L

0

rAþmf

� �
NTNdx; C ¼

Z L

0

ZIN00
T
N00 dx,
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K ¼

Z L

0

EIN00
T
N00 dx; Cf ¼

Z L

0

mf U NTN0 �N0
T
N

� 

dx,

Cou ¼ 0; except Couð2n� 1; 2n� 1Þ ¼ mf U ,

Kf ¼ �

Z L

0

mf U2N0
T
N0 dx,

Kou ¼ 0; except Kouð2n� 1; 2nÞ ¼ mf U2,

fg ¼

Z L

0

rAþmf

� �
gNT dx, ð15Þ

where M, C and K matrices are the global mass, damping and stiffness matrices of the pipe, respectively;
fg is the gravitational load vector. It should be mentioned that the Cf matrix is a skew-symmetric matrix;
i.e., Cf ¼ �C

T
f .

To simplify the presentation, Eq. (14) is expressed as

Meq €vþ Ceq _vþ Keqv ¼ feq (16)

with

Meq ¼M; Ceq ¼ Cþ Cf þ Cou

� �
,

Keq ¼ Kþ Kf þ Kou

� �
and feq ¼ fg. (17)

2.4. Stability analyses and dynamic response

The pipe under consideration may lose stability by either divergence (a static form of instability) or flutter
(a dynamic form of instability) [5]. Divergence may occur if both ends of the pipe are restrained. If one end of
the pipe is restraint free, flutter may occur in the pipe. To study the pipe stability, the homogeneous part of
the second-order system (Eq. (16)), is cast in a first-order form:

_Z ¼ AZ, (18)

where

Z ¼
v

_v

� �
and A ¼

0 I

�M�1eq Keq �M
�1
eq Ceq

" #
. (19)

The behavior of the above system (Eq. (18)), in the neighborhood of the equilibrium depends upon the
eigenvalues of the matrix A. It is assumed that the solution of Eq. (18) has the form

Z ¼ eltB, (20)

where l is a complex number to be determined and B is a constant vector. When the solution Eq. (20), is
inserted into Eq. (18), the nontrivial solution of B is assured by making

A� lIj j ¼ 0. (21)

Since the size of matrix A is (4n� 4n), Eq. (21) has 4n solutions. The stability of the collar-stiffened pipe is
determined by the sign of the real part of the eigenvalue lU If the real parts of the eigenvalues are negative, the pipe
is asymptotically stable; if at least one of the eigenvalues has a positive real part, the pipe is unstable; if at least one
of the eigenvalues has no real part, the pipe is marginally stable. Several methods are available to find the system
eigenvalues. In this study, a MATLABs operator is exploited to determine the eigenvalues of the matrix A.

To obtain the pipe response, the gravitational load should be included in the model. Eq. (18) with
gravitational load is rewritten as

_Z ¼ AZþ F (22)
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with

F ¼
0

M�1eq feq

 !
. (23)

The solution of Eq. (22) is given by

ZðtÞ ¼ eAtZð0Þ þ

Z t

0

eAðt�zÞFdz. (24)

The above solution Eq. (24) will be used to predict the dynamic response of the pipe.
3. Numerical results and discussions

In the collar-stiffened pipe, matrix A controls the nature of the system eigenvalues. Matrix A contains the
parameters mf ¼ fluid mass per unit length, rA ¼ pipe mass per unit length, EI ¼ pipe flexural rigidity,

U ¼ fluid velocity relative to the pipe and L ¼ pipe length. Dimensionless quantities that contain these
parameters are considered; namely, dimensionless mass ratio b ¼ mf

�
mf þ rA
� �

and speed ratio

u ¼ UL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf

�
EI

q
. The parameters rA and EI are considered to be of a uniform pipe. The stability of a

collar-stiffened pipe conveying fluid may be regarded as a question of how the eigenvalues l of A change when
the dimensionless quantities, b and u, are varied. The stable/unstable boundary is located at values of b and u

which correspond to Re(l) ¼ 0.
In this analysis, cantilever pipes of inner diameter Di ¼ 14mm and outer diameter Do ¼ 16mm

are considered. The pipes are of length L ¼ 983.3mm and are fixed at the left end (x ¼ 0) and free at the
Fig. 2. Stability map of a uniform pipe: (——) finite element of the present work and (K) [3].
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other end (x ¼ L). The pipes are made of aluminum with Young’s modulus E ¼ 76GPa and mass density
r ¼ 2840 kg/m3. The collars are also made of aluminum. Since aluminum possesses very small internal
damping, the pipes internal damping is neglected Zffi 0. The pipes are exposed to flowing fluids traveling at
constant speed U form the fixed end toward the free end.

The finite element model presented in the previous section is used to investigate the stability of collar-
stiffened pipes with various numbers of cells, cell length ratio Ls/Lu and step factor f. The collar-stiffened pipe
shown in Fig. 1(a) represents an assembly of a number of identical cells joined together in an identical fashion.
Each cell is discretized into a number of finite elements. The finite elements of the collar portion have diameter
larger than those in the regular portion of the cell.

To verify the validity of the finite element model, the results of the present work are compared with the
previously reported results in the literature, where available. A uniform cantilever pipe is considered in the
verification. This particular pipe configuration was chosen in order to make comparison with the results of
Gregory and Paı̈doussis [3]. Fig. 2 illustrates the stability boundary (map) of a uniform pipe obtained by the
present study and by Gregory and Paı̈doussis [3]. The results of the finite element model of the present study
agree quite well with those presented in Ref. [3]. This clearly confirms the validity of the finite element model
of this study.

3.1. Performance of collar-stiffened pipes

The effectiveness of the number of cells in enhancing the pipe stability is assessed for collar-stiffened pipes
with two, three, four, eight and 16 cells. The considered pipes possess step factor f ¼ 1.25 and cell length ratio
Fig. 3. Stability map of cantilever stiffened pipes for various numbers of cells. Ls/Lu ¼ 1/2; (f ¼ 1.25). (——) uniform pipe; (- - - -) two-cell

pipe; (- � - � -) three-cell pipe; (K) four-cell pipe; (m) eight-cell pipe; and (E) 16-cell pipe.
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Fig. 4. Response of stiffened pipes for b ¼ 0.2 and u ¼ 8.5. (——) two-cell pipe; ( ) three-cell pipe; ( � � � � � � ) four-cell pipe;

(-.-.-), eight-cell pipe; and (- - - - -) 16-cell pipe.

Fig. 5. Stability map of four-cell cantilever pipes for different Ls/Lu ratio. f ¼ 1.25. (——) uniform pipe; (K) Ls/Lu ¼ 1/2; (*)

Ls/Lu ¼ 1/3; (B) Ls/Lu ¼ 1/4; and (m) Ls/Lu ¼ 1/5.

O.J. Aldraihem / Journal of Sound and Vibration 300 (2007) 453–465 461
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Ls/Lu ¼ 1/2. Fig. 3 shows the stability boundaries (map) of uniform and collar-stiffened pipes. It is clear that
the presence of collars significantly improves the pipe stability characteristics when compared to a uniform
pipe. It is seen that the S-shaped segments in the uniform pipe is reduced to one segment in the collar-stiffened
pipes. The stability performance of four, eight and 16 cells pipes is almost identical, especially when the mass
ratio b is less than 0.6. For the considered pipe parameters, this suggests that four cells are enough to provide
effective enhancement in the stability characteristics of the pipe.

The time responses of the considered above collar-stiffened pipes are compared to each other. The
comparison is carried out for values of dimensionless quantities of (b, u) ¼ (0.2, 8.5)U At to0, the pipe is at
rest and in horizontal position. When tX0, the pipe is excited by a sudden gravitational load due to the pipe
and fluid weights. Fig. 4 shows the normalized tip displacements of the pipes. The normalized tip displacement
represents the dynamic tip displacement divided by the static tip displacement, which is generated by only the
gravitational load. For the considered values of u and b, the tip displacement of the two-cell pipe propagates
with time, in accordance to the predication illustrated in Fig. 3. The vibrations of other the collar-stiffened
pipes are damped out rapidly.
3.2. Effect of cell length ratio Ls/Lu on the stability

It was shown in the previous section that four cells are adequate configuration choice to assemble collar-
stiffened pipe of enhanced stability characteristics. The effectiveness of the cell length ratio Ls/Lu on
improving the pipe stability is evaluated in this section. The pipe consists of four cells. A value of 1.25 is taken
for the step factor f. Fig. 5 shows the stability map of uniform and collar-stiffened pipes of various values of
Ls/Lu ratio. It is seen that when bo0.6, the stability boundaries for considered Ls/Lu ratios are close to each
other. The effect of the cell length ratio on the stability becomes significant when b40.6. In this range, the
larger the Ls/Lu ratio the better is the stability characteristics. It is interesting to note that at bX0.82 and 0.9
the collar-stiffened pipes of Ls/Lu ¼ 1/5 and 1/4, respectively, lose stability at speed ratio u smaller than that
of a uniform pipe.
Fig. 6. Response of four-cell stiffened pipes for b ¼ 0.5 and u ¼ 11.5. (——) Ls/Lu ¼ 1/2; ( � � � � � � ) Ls/Lu ¼ 1/3; (-.-.-) Ls/Lu ¼ 1/4;

and (- - - - -) Ls/Lu ¼ 1/5.
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The responses of the previous pipes are shown in Fig. 6 for (b, u) ¼ (0.5, 11.5)U It is evident by inspection
that the vibration amplitude of pipes of Ls/Lu ¼ 1/4 and 1/5 increase with time. On the other hand, when
Ls/Lu ¼ 1/2 and 1/3 the vibration damps out. This behavior is consistent with our expectations based upon
the stability map shown in Fig. 5.

3.3. Effect of step factor f on the stability

A complete assessment of the effectiveness of the stiffened pipe configuration in enhancing the pipe stability
requires the consideration of the step factor f. Four cell pipes of Ls/Lu ¼ 1/2 are considered. Fig. 7 shows the
stability map for step factor f equals one (uniform pipe), 1.1, 1.25, 1.5 and 2. The map clearly indicates that
increasing the step factor enlarges the stable region in the b–u plane. Furthermore, the map shows that the
number of S-shaped segments reduces as f is increased and vanishes at a value of f ¼ 2.

3.4. Eigenvalue branches

The variation paths of the eigenvalues with speed ratio u are demonstrated via the eigenvalue branches. The
eigenvalue branches are used to predict the modes of vibration that are responsible for causing flutter in the
pipe. When a particular eigenvalue branch crosses the imaginary axis of the root locus diagram, flutter occurs
by that particular branch (mode). Figs. 8(a)–(c) shows the eigenvalue branches of the first three modes for four
cells pipes with (f, b) ¼ (1.5, 0.5) and for various values of Ls/Lu. The numbers on the branches are the values
of the speed ratio u. For a uniform pipe, the branch on which flutter occurs is that of the third mode
(see Fig. 8(c)) and at u ¼ 9.3. On the other hand, the collar-stiffened pipes lose stability by the second
Fig. 7. Stability map of four-cell cantilever pipe for different step ratio f. (——), f ¼ 1 (uniform) pipe; (- - - -) f ¼ 1.1; (K) f ¼ l.25;

(B) f ¼ 1.5; and (*) f ¼ 2.
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Fig. 8. Eigenvalue branches for four cells pipes with f ¼ 1.5 and b ¼ 0.5: (a) first mode; (b) second mode; and (c) third mode.

(K) Uniform pipe; (m) Ls/Lu ¼ 1/2; (+) Ls/Lu ¼ 1/3; and (E) Ls/Lu ¼ 1/4.

O.J. Aldraihem / Journal of Sound and Vibration 300 (2007) 453–465464
branch (see Fig. 8(b)) at (u, Ls/Lu) ¼ (11.5, 1/4), (u, Ls/Lu) ¼ (11.7, 1/3) and (u, Ls/Lu) ¼ (11.7, 1/2). These
results are consistent with those shown in Figs. 3–7.

4. Conclusions

The dynamic stability of collar-stiffened pipes conveying fluid is analyzed in this work. The collar-stiffened
pipes consist of cells joined together at regular intervals along the pipe length. The pipe stability is predicted by
means of a finite element model, which accounts for the interaction between the flowing fluid and pipe
vibration. The effects of the number of cells, cell length ratio and collar step factor on the stability
characteristics are examined. Results demonstrate that collar-stiffened pipes exhibit significantly improved
dynamic stability characteristics when compared to a uniform pipe. The stability characteristics of
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collar-stiffened pipes with four and more cells are comparable. The effect of the cell length ratio on the
stability appears to be important for large values of mass ratio. The stability results also indicate that
increasing the step factor enlarges the stable region of the pipe when compared to a uniform pipe. It is also
shown that the mode of vibration which is responsible for flutter in uniform and collar-stiffened pipes is not
necessarily the same.
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